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PDC project

• A new DOE ASCR project to explore next generation 
storage systems and interfaces

• Project team
§ Quincey Koziol, Houjun Tang, Bin Dong (LBNL)
§ Jerome Soumagne, Kimmy Mu (The HDF Group )
§ Venkat Vishwanath, François Tessier (Argonne National Lab)
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HPC data management requirements
Use case Domain Sim/EOD/an

alysis
Data 
size

I/O Requirements

FLASH High-energy 
density physics

Simulation ~1PB Data transformations, scalable 
I/O interfaces, correlation 
among simulation and 
experimental data

CMB / 
Planck

Cosmology Simulation, 
EOD/Analysis

10PB Automatic data movement 
optimizations

DECam & 
LSST

Cosmology EOD/Analysis ~10TB Easy interfaces, data 
transformations

ACME Climate Simulation ~10PB Async I/O, derived variables, 
automatic data movement

TECA Climate Analysis ~10PB Data organization and efficient
data movement

HipMer Genomics EOD/Analysis ~100TB Scalable I/O interfaces, 
efficient and automatic data 
movement
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Easy interfaces and superior performance

Autonomous data management

Information capture and management



POSIX I/O: Main functionality
POSIX File System Object Store

chmod
open
read
lseek
write
close
stat

unlink
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POSIX File System Object Store
chmod
open
read
lseek
write
close
stat

unlink

POSIX I/O: Metadata
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All files have a common 
set of metadata

(permissions, owner, 
group, mtime, atime 

ctime)

Slide from Glenn Lockwood



POSIX File System Object Store
chmod
open
read
lseek
write
close
stat

unlink

POSIX I/O: Stateful
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I/O is stateful
(read/lseek/write operate 
on file descriptors from 

open/close)

Slide from Glenn Lockwood



POSIX File System Object Store
chmod
open
read
lseek
write
close
stat

unlink

POSIX I/O: Consistent
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Reads and writes are 
atomic and strongly 

consistent:
After a write() to a regular file has successfully 
returned:
• Any successful read() from each byte 

position in the file that was modified by that 
write shall return the data specified by the 
write() for that position until such byte 
positions are again modified.

• Any subsequent successful write() to the 
same byte position in the file shall overwrite 
that file data.

Slide from Glenn Lockwood



What is an object store? Metadata-less
POSIX File System Object Store

chmod
open
read
lseek
write
close
stat

unlink
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No prescribed metadata

• object id (e.g., 0xbf5abcdb)
• object size (e.g., 

5,368,709,120)

Slide from Glenn Lockwood



What is an object store? Stateless
POSIX File System Object Store

chmod
open
read
lseek
write
close
stat

unlink
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No state

Slide from Glenn Lockwood



What is an object store? Simple
POSIX File System Object Store

chmod
open
read GET
lseek
write PUT
close
stat

unlink DELETE
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Slide from Glenn Lockwood



Examples of object storage systems

§ Object storage services
§ Amazon S3, Rackspace Cloud files, HP Cloud object 

storage, IBM Cloud Object Storage, etc.
§ Object-based storage systems

§ Lustre, etc.
§ Ceph
§ DAOS
§ MarFS
§ OpenStack Swift
§ …
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What is an object?

• Chunks of a file
• Files (images, videos, etc.)
• Array

• Key-value pairs
• File + Metadata

Footer 12

Current parallel file systems

Cloud services (S3, etc.)

HDF5, DAOS, etc.

OpenStack Swift, 
MarFS, Ceph, etc.



Science Applications

High Level I/O Library (HDF5, PNetCDF, 
ADIOS)

I/O Middleware (POSIX, MPI-IO)

Parallel File System (Lustre, GPFS,..)

I/O Hardware

Existing parallel I/O stack

• Storage hierarchy is 
considered to get deeper

• Node local
• Out-of-memory
• Shared by nodes (BB)
• PFS cache
• PFS
• Archive

• Evolving parallel file system
• FastForward I/O stack
• Software for managing 

different layers of 
storage HW

• POSIX-based I/O 
middleware

• Decades old tech
• IO 

forwarding/dispatching 
layers

• High-level I/O libraries
• Novel data models
• Support for in situ 

analysis
• Extensive metadata

• Data driven science
• Large and complex 

data
• In situ analysis
• Novel abstractions
• Workflows 
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Challenges and requirements

Applications

File system

SD

Parallel FS

SD

OSSMDSMDS
…

…

OSS…

Metadata services Object storage services

• Object-based parallel file 
systems – Evolutionary 
patched systems to sequential 
file systems

• Performance tuning should not 
be a scientist’s job

• Managing millions of 
directories and files is not 
scalable

• Lack of information capture 
and management

• Integrated data management 
across multiple storage layers 
is absent
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HPC data management requirements
Use case Domain Sim/EOD/a

nalysis
Data 
size

I/O Requirements

FLASH High-energy 
density physics

Simulation ~1PB Data transformations, scalable 
I/O interfaces, correlation 
among simulation and 
experimental data

CMB / 
Planck

Cosmology Simulation, 
EOD/Analysis

10PB Automatic data movement 
optimizations

DECam & 
LSST

Cosmology EOD/Analysis ~10TB Easy interfaces, data 
transformations

ACME Climate Simulation ~10PB Async I/O, derived variables, 
automatic data movement

TECA Climate Simulation ~10PB Data organization and efficient
data movement

HipMer Genomics EOD/Analaysi
s

~100TB Scalable I/O interfaces, 
efficient and automatic data 
movement

15

Easy interfaces and superior performance

Autonomous data management

Information capture and management



Research toward object-centric storage systems

• Two objectives of “object-centric storage”
– Performance
– Productivity 

• Autonomous data management
– Users and application developers should be free from managing byte 

streams, files, and directory hierarchy
– Automatic and efficient data movement and use of memory hierarchy 

in exascale systems

• Support for extracting information from data
– Automatic extraction and management of information
– Simulation time analytics
– Interaction among multiple datasets (e.g., simulation and 

experimental/observation data)
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PDC interpretation of an object

• Chunks of a file
• File
• Array

• Key-value pairs
• File + Metadata
• Data + Metadata + Provenance + Analysis operations 

+ Information (data products)

Footer 17

Current parallel file systems

Cloud services (S3, etc.)

HDF5, DAOS, etc.

OpenStack Swift

Proactive Data Containers (PDC)



Proactive Data Containers
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Interface
– Programming and client-level 

interfaces

Services
– Metadata management
– Autonomous data movement
– Analysis and transformation task 

scheduler

PDC locus services
– Object mapping 
– Local metadata management
– Locus task execution

19

PDC System – High-level Architecture



Interface
– Programming and client-level 

interfaces

Services
– Metadata management
– Autonomous data movement
– Analysis and transformation task 

scheduler

PDC locus services
– Object mapping 
– Local metadata management
– Locus task execution
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PDC System – High-level Architecture

Persistent Storage API

BB FS Lustre DAOS

…



• Create an object
– Pass object properties (metadata): name, lifetime, user info, 

provenance, tags, dimensions, data type, transformations, 
consistency, etc.

• Open object
- Memory allocation, etc.

• Create a region
• Map and unmap a region to object
• Close object

• Release object

PDC API – Object manipulation
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- Objcet ID
- DataObjLocation
- SystemInfo
- ID Attributes

- Name
- AppName
- Owership
- TimeStep

- Create
- Delete
- Search
- Update

 OperationsUser-defined TagPre-defined Tag

- (UserTag1,  Value1)
- (UserTag2,  Value2)
- (UserTag3,  Value3)
-   ...

Metadata Object



• Create query with conditions
• Execute query
• Iterate_start

• Iterate_next
• Get_object_handle
• Get_object_info

PDC API – Object Access
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SoMeta: Metadata management design
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Metadata server design
– Distributed metadata 

servers
– Uses a core on each 

compute node
– Distributed hash table to 

select metadata servers

Capabilities
– Create, update, and delete 

metadata objects
– Metadata objects are 

searchable
– Attach tags for extended 

attributes and relationships

- Objcet ID
- DataObjLocation
- SystemInfo
- ID Attributes

- Name
- AppName
- Owership
- TimeStep

- Create
- Delete
- Search
- Update

 OperationsUser-defined TagPre-defined Tag

- (UserTag1,  Value1)
- (UserTag2,  Value2)
- (UserTag3,  Value3)
-   ...

Metadata Object



Scalable metadata management for object-centric storage

Impact

Approach

• Existing and future object-centric 
storage systems are able to use 
SoMeta for scalable metadata 
management.

• SoMeta has up to 3.7X speedup
over Lustre in common metadata 
operations with 4 servers, and 
scales well with more server 
processes.

• SoMeta scales well with the 
number of metadata servers; w/ 
120 servers > 3 million object 
creation operations per second

• Developed a scalable, fault tolerant, user-
level, distributed metadata management 
system for object-centric storage systems

• Our system, SoMeta, provides tagging for 
storing rich semantic information as well as 
capabilities to search and retrieve interesting 
metadata objects, based on keyword search. 

Problem
• Existing metadata management on file 

systems do not to grow or to shrink based 
on the need client load

• The load of creating objects by hundreds of 
thousands to millions of processes cannot 
be handled by existing file systems
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Results

Throughput for SoMeta to create objects 
with unique names.

A comparison of SoMeta and 
Lustre, where both systems use 
four metadata servers. 
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Challenges of deep storage hierarchy

– Inefficiency : 
• Staging in/out data to/from burst buffers (BB) 
compete for resources on BB servers

– Burden on users 
• Users or applications have to explicitly make the 
data movement decisions, which could lead to 
inefficiency

– Limited to one level
• Staging in or out and transparent caching is 
aware of a single level storage

25Data Elevator



Data Elevator for moving data transparently

26Data Elevator

Memory

Parallel file system

Archival storage (HPSS 
tape)

Shared burst buffer

Node-local storage

Campaign storage

• Contributions
- Low-contention data movement library for hierarchical 

storage systems
- Offload of data movement task to a few compute nodes 

or cores
- Data Elevator on NERSC’s Cori Phase I

- With two science applications, we demonstrated that Data 
Elevator is 1.2X to 4X faster than Cray DataWarp stage_out
and up to 4X faster than writing data to parallel file system

• Benefits of using Data Elevator
- Transparent data movement: Applications using HDF5

specify destination of data file and the Data Elevator 
transparently moves data from a source to the destination

- Efficiency: Data Elevator reduces contention on BB
- In transit analysis: While data is in a faster storage 

layer, analysis can be done in the data path



Data Elevator – high-level operation

27Data Elevator

Start Data Elevator along with an application

H5Fopen (..)
…

…
H5Dwrite (..)
…

H5Fclose (..)
…

MPI_Finalize ()

DE intercepts HDF5 calls at run time using VOL

Sets up staging area, and give file handle to app
Records the destination in a Berkeley DB table

Writes the data to staging area
Updates the status

Staging area ready for use 
(analysis, transfer, etc.)
Application can continue with computation

Check staging area status
Move any remaining data



Data Elevator design

• Implementation challenges
– Transparently intercepting I/O calls 
– Moving data between storage layers 

efficiently w/ low contention

28Data Elevator

• Solutions
– IOCI – IO Call Interceptor library - VOL
– Transparent & Efficient Data Mover 

processes – Concurrent MPI job

Buffer
Burst

Simulatioin processes

API

f.h5.temp

f.h5

Computing Node

DEMT
f.h5,  f.h5.temp, ...

Append
Redirected I/O Async Data Movement

PFS

IOCI

TEDM processes

HDF5/Others API MPI−IO

Simulation processes

DM



Metadata for managing the state of 
data

• Metadata Table to manage the data movement status
– Data written to BB
– Data is written to BB
– Request to analyze data and start analysis
– All data reads are done
– Data is being written to PFS
– Data is moved to PFS
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HPC data management requirements
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Easy interfaces and superior performance

Autonomous data management

Information capture and management


